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ABSTRACT 

Estimating the state of the power system in Real time is a challenging task, mainly because, solving the non-linear  

large power system equations by iterative solution comsumes huge computational time and memory. Online Energy 

Management System (EMS) these state estimators need to  Estimate the state of the system at very short intervals.  

Conventional methods like Newton-Raphson is not suitable for such real time application.  

To improve the performance of SE, certain techniques like AI, Real time, Hirarchial and Dynamic methods are 

listed in reference [1][4][5][11][12][13]. The most common “Two-Level” SE technique is applied by spliting the large 

power system in to sub-networks and each sub-networks are managed by the local control station in coordination with the 

Centre station – [2][3][7][8][9][14]. Even though it reduces the computational time, still it is not suitable for real time 

applications.  In the “Two-Level SE” mainly same NR method is used, however, before applying the NR technique, the 

electric network is physically divided, which results to mathematical approximation.  

This paper presents an approach to solve the problem in hand without physically  dividing the network and/or any 

approximation on the existing NR method. Single large mathematical problem can be divided into smaller independent 

parallel task by changing the multiplication method of large sparce jacobian matrix. This leads to a whole new approach 

resulting in reducing in computing time as well as dynamic memory requirement. 

KEYWORDS:  SE-State Estimation, WLS-Weight Least Square, RTU-Remote Terminal Unit, NR-Newton Rapson,   

AI -Artificial Intelligence, Node Area-A Node along with its Connected Node is Referred as Node Area 

INTRODUCTION 

The power system is highly distributed in nature, Instead of dividing the network in to sub networks, it is better to 

divide the large single problem into small independent sub tasks so that multiple processor can be used for computation. 

Major challenge here to obtaing the independent sub-task. The NR method mathematical solution is procedure oriented 

iterative technique which involvs large number of non-linear simultaneous equations. The ideal solution would have been 

the vertical division of the probem into many sub-independent parallel task.  By modifying the existing Newton-Raphson 

state estimation computational procedure requires the clear understanding of the procedural steps involed in the existing 

NR method. The brief insight of NR method is given below.  

NEWTON RAPSON (WLS) METHOD FOR STATE ESTIMATION –BR IEF REVIEW 

The Newton Rapson final equation is A ∆x = b (taking weighting matrix W which is a diagonal matrix Wii is the 

standard deviation of meter i.) By applying the tylor series to the nonlinear equations of power syatem following equations 
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are derived. Here, the error vector includes  nonlinear vector function f(x). In order to estimate x, an initial value x0 is 

assumed and after every iteration x0 will be up-dated till the convergence.  

 (J0
T W J) ∆x   =   J0

T W ∆z 

 Let A= (J0
T W J) & b = J0

T W ∆z 

 A ∆x = b                                                                                                                                                                    (1) 

This is a set of linear equations, if higher order terms of the taylor expansion of f(x) were really negligible, the 

solution yield the correct ‘x’.  The jacobian J is itself a function of x. The state variable vector x can be obtained by solving 

the equation A*∆x = b iteratively. The vector x should therefore be changed accordingly after every iteration till the 

convergence is obtained. 

xn+1 = xn + ∆x1 (1st iteration count) until convergence is reached. Weighted least squares (WLS) minimization 

technique is used. 

 No of state variables  = (2*n-1) 

 Total no of measurements = m 

 These measurements may include one or all quantities such as [ Pi ,Qi ,pij ,qij, Vi ,δi] 

• Pi ,Qi  = Real & Imaginary part of injected power respectively 

• pij ,qij  = Real & imaginary part of line follows respectively 

• V i & δi  = Voltage magnitude & phase angles. 

• Dimension of Jacobian matrix =  m * (2n - 1) 

∆z = zmeasured – zcalculated 

‘W’ is the diagonal weigh matrix of the order of (m*m) 

 [ ]n,.....v2,v1,,v1n,....δ2,δ1δx −= ; state variables. 

n= number of network nodes, 1,2,…n. 

Elements of jacobian are derived from injected power and line flow equations. 
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PROPOSED ALGORITHUM 

Proposed New Algorithum 

The following modification of forming the jacobian results in independent parallel task and thereby multiple 

processors can be used to carry out the task parallelly. Jacobian being the large sparse matrix, the suggested new method 

can fully avoid storing and retrieving of large saprse matrix. the let ‘m’ be the total number of measurements taken for the 

given network. Each row of jacobian is formed based on the type of measurement underconsideration, if there are ‘m’ 

measurements, the jacobian of the network will contain ‘m’ rows and (2n-1) coloms. 

Instead of forming the complete jacobian of the netork and then multiplying to find ‘A’ matrix, (see eq1), It can 

be computed by each row of jacobean [ 1111 ** AJWJ = ]and [ 1111 ** bzWJ = ], this results in  first terms of each 

elements of the resultant matrix “A” and “b” respectively, which can be visualized as shown below.  

 {A 1 + A 2…+A i ...+ Am} ∆x = {b 1  ..+b r ...+ bm}                                                                                                    (3) 

 )()(
11

j

m

j

m

j
j bxA ∑∑

==

=∆                                                                                                                                         (4) 

 A = {A 1 + A 2 +A r .+ Am}                                                                                                                                        (5) 

 b = {b 1.+b r + bm}                                                                                                                                                     (6) 

Hence, it is not necessary to form complete two dimentonal Jacobian and then carry-out the multiplication task. 

New jacobian is a one dimention arry of the order of [1*(2n-1)] is replaced by [m*(2n-1)], thereby no special sparse 

matrics storage is required.  

Node Wise Grouping of Measurement: Jacobian Relation 

The measurements can be grouped node wise, and it can be represented as shown below. 
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 Hence A∆x = b 

 ( ) area nodeith   torefers NAi''subscript  −NAi  

P
rA - It is the sub set of matrix ‘A’ for the injected Real power measurement taken at ‘r’th node/bus. Similarly, 

Q
rA  (here Q represents reactive power) and like wise for other measurements. 

Hence, from the above derivation, it is evedient that up to the formation of ‘ANAi ’ (node level), computations can 

be carried-out independently without any approximation, which gives the scope for parallel processing.  
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System Design 

Assumptions 

• All measurements are taken at the same instant 

• At each node total of measurement can be: - injected power measurements of node + (node voltage measurement 

+ node angle measurement +the line flow measurements ) of that node to other connected nodes.  

Flow Chart 

 

Figure 1 

COMPUTING  TIME  ANALYSIS  OF SE 

General Technique 

The computational time of state estimation using NR method is directly linked with the number of nodes in the 

network. Generally, to solve A*∆x =b, if the computational time required is (say) “t1” for the network having n1 number of 

nodes, then the computational time required for the network having n2 number of nodes is approximately equals to 

(n2/n1)
2*t 1. Or in other words the SE computational time increases “square time” the ratio of increase in the number of 

nodes of the network.  It’s because as the number of node increases the size of the Jacobian and “A” matrix. For example  

The size of matrix “A” for the network having 10 nodes is nearly equal to (20 x20) =400.  

The size of matrix “A” for the network having 30 nodes is nearly equal to (60 x60) =3600. 

(3600/400) = 9 = (30/10)2. 
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Optimum Computing Technique 

The fact is, these matrices are highly sparse in nature. These none zero elements of jacobian/”A” has a direct 

relation with the network incident matrix. Using this information one can design the computation focusing only on none 

zero elements to avoid operations which results in zero. This can be done by using the network incident matrix as index to 

compute arithmetic operation of none-zero elements. This makes the computational time required is directly proportional 

to the number of measurements and does not depend on the size of the matrices. SE computational time reduces drastically 

by using optimum computing technique.  

For example, a 10 bus system having number of lines connected (say) = 14, then the size of Ybus = 10x10 = 100, 

whereas none zero elements in the Ybus = 10+14x2 = 38; 

Hence, none zero elements in the matrix “A” = 38 x4=152; whereas size of “A” approximately                                    

equal to (20x20) =400. Say “t1” is SE computational time for the network having 10 nodes using general method, then by 

using optimum technique, SE computational time for the same network is approximately equal to (152/400)x t1 , let this be 

equal to t2. It’s obvious that t2 << t1. Now if the network size is increased to n2 (say for example n2 =30, number of connected 

lines=41, none zero Ybus elements=30+41x2=112 hence number of none zero elements of matrices=112x4=448), then the 

computing time is approximately proportional to (448/152) = which is nearly equal ‘3’, hence the computing time is nearly 

equal to= (n2/n1) x t2 . Because, whatever the size of matrices, computational time depends upon the number of none zero 

elements which increases   almost linearly with node. 

Total SE computational time can be related with the following equation 
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EXAMPLE & RESULTS 

Note: All quantities are in pu. 

Table 1: Input Line Data for 13 Bus System (ISE) 

Bus No R(Pu) X(Pu) 
1-2 .00147967 .00286760 
2-3 .00043843 .00124174 
3-4 .00027711 .00078428 
4-5 .00059760 .00166769 
4-8 .00159967 .00310017 
5-6 .00034314 .00097190 
5-9 .00034314 .00097190 
6-7 .00032364 .00091669 
7-10 .00032364 .00091669 
8-9 .00029438 .00083380 
9-10 .00053157 .00150562 
9-12 .00037793 .00107050 
10-11 .00058777 .00166488 
11-13 .00032364 .00091669 
12-13 .00036843 .00104355 
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Table 2: Injected Power & Voltage Measurements 

Ems 
No. 

Real 1mg. 
Bus 
No. 

Volt 

1 28.5335 13.0837 1. 1.05300 
2 -4.73 -1.55 3. 0.95792 
3 -1.27 -0.41 10. 0.92304 
4 -0.35 -0.11 11. 0.91939 
5 -4.38 -1.44 12. 0.92178 
6 -2.11 -0.69 13. 0.92036 
7 -0,42 -0.13 0 0 
8 -4.73 -1.55 0 0 
9 -1.27 -0.41 0 0 
10 -0.35 -0.11 0 0 
11 -4.38 -1.44 0 0 
12 -2.11 -0.69 0 0 
13 -0.42 -0.13 0 0 

 
Table 3: Line Flow Measurements 

Bus No. Real 1mg. 
1-2 28.5327 13.0837 
2-1 -27.2179 -10.5355 
2-3 22.4879 8.9855 
3-2 -22.2197 -8.2258 
3-4 20.9000 7.7700 
4-5 12.9700 5.1000 
4-8 7.6200 2.1282 
5-9 4.3979 1.9040 
8-4 -7.4182 -1.9161 
8-9 2.7900 0.3800 
9-10 1.,8043 0.5194 
11-13 -1.4600 -0.4582 

 
Table 4: SE Result of L3 Bus Test System 

*Slack Bus 

No Volt Ang Rad 
1 1.053269 0.101912 
2 0.979368 0.041320 
3 0.958231 0.015757 
4* 0.945912 0.000000 
5 0.928889 —0.021096 
6 0,925904 —0.025075 
7 0.924513 -0.026839 
8 0.926468 —0.022792 
9 0.925278 —0.025320 
10 0.923398 —0.028199 
11 0.919737 —0.033261 
12 0.922133 —0.029788 
13 0.920707 —0.031856 

     * Convergence =.001 for voltage,  
     = .00001 for angle. 
 

Table 5: Computational Time for 13 Bus Test System 

 Total SE Time  Time-up to Jacobian Product  
Conventional method 1.08 ms 0.88 ms 
New method (single processore) 0.52 ms 0.32 ms 
New method (paralle processores)*  0.225 ms 0.025 ms 

         *Number of parallel processors are assumed to be =13 
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Table 6: Relative Time 

 
Total SE 

Time 
Ratio 

Time Ratio- 
Jacobian 
Product  

Conventional /new  single ≈ 2 2.75 
Conventional /new parallel  ≈ 5 35 
New single/New parallel ≈ 2.36 13 

 

The above table shows actual results obtained which is same as that of the Integrated SE results obtained by the 

conventional method. It shows that both approach yields the same results. Thereby this new concept has been proved with 

this example.  

CONCLUSIONS 

Node wise grouping of data leads to new approach for applying the NR solution. The number of state variables to 

be computed at each bus-level is very small as compared to the whole network, and till the last step computations can be 

carriedout independently & separately thereby the fast computation is possible. If sufficient numbers of measurements are 

ensured at each node, then state estimantion can be carried out at each bus.  At Central computing station only the final 

estimated state variables are to be considered as sudeo-measurements. The other possibilities of this approach is under 

progress. 
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